
ASH(1) ASH(1)

NAME
ash ! an "AppleScript Shell" for interactive execution of AppleScript commands

SYNOPSIS
ash [<options>] [filename(s)]

DESCRIPTION
This ‘‘AppleScript Shell’’ program is intended for interactive use in a manner similar to that of the standard
Unix shells. You can execute simple one-line AppleScript commands by just typing them and hitting
’return’. The AppleScript command will be executed immediately.

But many AppleScript commands are multiple lines (e.g. ’tell’ or ’repeat’ commands). For these, the
‘‘AppleScript Shell’’ will go into a mode where it stores your commands until you enter the corresponding
’end’ command at which point your multiple-line AppleScript command will be executed. The prompt will
show you what mode you are in.

You can exit this shell at any time by entering the command ‘‘!exit’’. If you want to abort a pending multi-
line command without exiting from the shell, use the ‘‘!clear’’ command.

Results of AppleScript commands
The result of the AppleScript command that was last executed will appear in the Terminal window without
you having to do anything special. But if you want to output the value of an intermediate AppleScript
expression, you can use the ‘‘!echo’’ command. For example:

tell application ‘‘Finder’’
set theSelection to selection
set n to number of items in theSelection
!echo ‘‘number of items selected: ’’ & n
repeat with i from 1 to n

set theItem to item i of theSelection as alias
!echo ‘‘item ’’ & i & ‘‘ is ’’ & theItem

end repeat
end tell

This is especially useful when debugging an AppleScript. The ‘‘!echo’’ command is implemented by
means of an AppleScript subroutine ‘‘ashEchoSub’’ which is included in the AppleScript before it is
executed.

Subroutines and Script Objects
When you dene a subroutine (starting with ‘‘on’’ or ‘‘to’’) or a script object (starting with ‘‘script’’), these
pieces of code remain active and are available for use in all subsequent commands. I.e. all subroutines and
script objects dened in the current session are present in the AppleScript that is executed. The ‘‘!show’’
command will show you what subroutines and script objects have been dened so far.

Since subroutines and script objects don’t affect anything unless they are invoked, you can generally just
forget about the extraneous ones. But if you want to clean house just to make things neater, there are a few
commands provided for this purpose. The ‘‘!clearSub’’ command will remove the subroutine specied as
an argument. For example, if you had previously dened a subroutine named ‘‘foo’’, then ‘‘!clearSub foo’’
would remove it. The ‘‘!clearScript’’ command will remove the script object specied as an argument. For
example, if you had previously dened a script object named ‘‘fred’’, then ‘‘!clearScript fred’’ would
remove it. The ‘‘!clearAll’’ command will remove all previously dened subroutines, script objects, prop-
erties, and variables as well as clearing the current AppleScript.

Variables & Properties
There is only preliminary support for top-level variables or properties. If you dene a top-level variable or
property, it and its value will remain active and be available for use in all subsequent commands in the same
way that subroutines and script objects persist after denition. The ‘‘!clearVar’’ command will remove the
variable or property specied as an argument. It is often useful to use ‘‘batch mode’’ (via the ‘‘!batch’’

ash v0.60 2006-11-08 1

ASH(1) ASH(1)

command) or to use a ’try’ block when you are setting some variables at top level that you want to use in
some later statement.

Running AppleScript commands in ‘‘batch mode’’
In the usual mode of operation, each AppleScript command that you enter is executed immediately.
(Multi!line commands (e.g. ’tell’ or ’repeat’) will execute when the corresponding ’end’ is entered.) But
sometimes you want to enter a bunch of AppleScript commands and then have them all executed at once.
The ‘‘!batch’’ command allows you to do this ! it starts ‘‘batch mode’’ operation. AppleScript commands
issued in this mode are only executed when you leave batch mode via the ‘‘!end’’ command. Unlike the
case in normal one-command-at-a-time operation, subroutines and script objects dened in batch mode do
not remain active after the end of batch mode.

If you supply a lename argument to the ‘‘!batch’’ command, ’ash’ will go into batch mode, source the
specied le, then automatically exit from batch mode.

Comments
Any line starting with a hash (#) character is treated as a comment and thus is completely ignored by ’ash’.
This parallels the commenting convention of the usual Unix shells like ’bash’ and ’tcsh’. Of course the
standard AppleScript commenting characters are also supported.

Startup
When ’ash’ starts up, it executes the commands in the le ˜/.ashrc in the same manner as if these commands
had been typed interactively at the command prompt. (In other words, it automatically ‘‘sources’’ the
˜/.ashrc le.) For example, if you had the following command in the .ashrc le:

say ‘‘Welcome to \’’ash\‘‘ (AppleScript Shell)’’

then you would get a spoken welcome when you started ’ash’. You can use the .ashrc le to store com-
monly used abbreviations or to set up AppleScript subroutines, etc. You can use the ‘‘!norc’’ command-
line option to prevent the ‘‘.ashrc’’ le from being read at startup.

Getting input from the user
The usual way to get input from the user in an AppleScript is to put up a dialog of some sort. Since the
AppleScripts run by ’ash’ are in a different environment than usual, using something like ‘‘display dialog’’
would result in an error message saying ‘‘no user interaction allowed’’. In order to sidestep this problem,
’ash’ redirects all such user interaction to the Terminal application by prefacing such commands with ’tell
application ‘‘Terminal’’ to’. If you are running ’ash’ in some other terminal-type application, you will need
to change the Perl variable ’$terminalAppName’ to reect the name of your app.

An alternative way to get input from the user when running scripts in ’ash’ is to use the ‘‘!read’’ command.
For example ’!read n’ will read characters from the keyboard and put them into an AppleScript variable
named ‘‘n’’. If you are using this method of getting input from the user, you probably want to use the
‘‘!echo’’ command to display a prompt to tell the user what is expected.

Note on command-line editing
This script uses the Perl module ‘‘Term::ReadLine’’ which supplies facilities for interactive com-
mand!lines. The default Perl installation on OS X (as of Tiger) only includes a ‘‘stub’’ version of the facili-
ties used by this module. If you install the module ‘‘Term::ReadLine::Perl’’ (e.g. via CPAN) then you will
get command-line editing and command history (via the arrow keys).

OPTIONS
The following options can be specied on the command-line that is used to invoke ’ash’:

!nogreeting
Disables the greeting message that is given when you start ’ash’

ash v0.60 2006-11-08 2

ASH(1) ASH(1)

!quiet
Stops ’ash’ from outputing status messages in response to commands. This option also disables the
greeting message at startup.

!norc
Prevents the ˜/.ashrc le from being read at startup. (This is only useful when running interactively
since stand-alone scripts do not read the ˜/.ashrc le at startup.)

!oneoff
Puts ’ash’ into ‘‘one off’’ mode where ’ash’ will automatically exit after executing one AppleScript
command. The ˜/.ashrc le will still be read at startup and AppleScript commands in that le don’t
count. It is often useful to combine this option with ‘‘!quiet’’ (and possibly with ‘‘!norc’’) to get a
quick, clean way to run a single AppleScript command. This option is ignored when running ’ash’
non!interactively.

!trace
Enables ‘‘trace mode’’ for the execution of AppleScripts. In this mode, the execution pauses after each
AppleScript statement and the result from the previous statement is displayed. Each statement will
pause for one second before continuing with the rest of the AppleScript. Pressing any key will stop it
from pausing and so if you want it to run freely, just hold a key down. Trace mode is mostly useful
when running scripts non!interactively.

!debug level
Sets the debugLevel to the specied integer. Higher values result in more debugging messages. Values
higher than 1 will not likely be useful to anyone other than the developer. (Default is 0)

!timing level
Sets the timingLevel to the specied integer (should be either 0 or 1). If the timingLevel is greater
than zero, ’ash’ outputs info about the time taken to compile and execute the AppleScript. (Default is
0)

!osaMethod method
Species which method should be used to compile and execute the AppleScript. Possible values are:
macosasimple, macperl, osascript

macosasimple: Uses the Perl module ‘‘Mac::OSA::Simple’’
macperl: Uses the Perl module ‘‘Mac::Perl’’

osascript: Uses the /usr/bin/osascript tool

Any of the above command-line options can be abbreviated as long as there is no ambiguity. For example,
‘‘!osa’’ can be used in place of ‘‘!osaMethod’’ since that is the only option that starts with ‘‘!osa’’.

If any lenames are specied on the command!line, ’ash’ will execute the commands in those les
non!interactively. I.e. supplying a le on the command-line is an alternative to inserting a ‘‘shebang’’ line
and making the script le executable as described in the ‘‘stand!alone scripts’’ section.

COMMANDS
There are several special commands (starting with "!") that are interpreted by this shell. These commands
can be entered at the ash prompt when running interactively, or inserted in a le that is run non!interac-
tively. (The reason for the ‘‘!’’ at the start of each command name is to ensure that these commands don’t
collide with some AppleScript syntax.) Even though some of the command names include uppercase char-
acters, the command processing is case!insensitive, so for example you could use ‘‘!clearall’’ instead of
‘‘!clearAll’’.

!help [topic]
If you supply one of the available topic names as an argument, the ‘‘!help’’ command will show the
help text for that topic, otherwise it will show the ‘‘intro’’ section. To see the list of available topics,
use ‘‘!help topics’’.

!exit
Exits the ash shell

ash v0.60 2006-11-08 3

ASH(1) ASH(1)

!abbrev [name [commandString]]
Denes an abbreviation for a command string. For example:

-abbrev strack some track of playlist "Library"

denes ’strack’ as an abbreviation for ’some track of playlist ‘‘Library’’’ so you could then issue the
AppleScript command

tell application "iTunes" to play strack

in order to play a random song from your iTunes library.

You can remind yourself of the denition of the abbreviation named ‘‘strack’’ by entering the com-
mand ‘‘!abbrev strack’’. You can see the current list of abbreviations by entering the command
!abbrev (with nothing following it).

!unabbrev name
Removes a previously dened abbreviation.

!echo expression
Echos the value of the specied AppleScript expression.

!read [options] [varName]
Reads from the keyboard in the same manner as the ’read’ command in Bash. If varName is supplied,
the characters read are stored in an AppleScript variable of that name. The options are the same format
as those for the Bash ’read’ command. E.g. ‘‘!n1’’ will read one single character (without the need to
press Return), ‘‘!s’’ will disable echoing of characters, ‘‘!t5’’ will make it timeout after 5 seconds.
Note that unless you use the ‘‘!t’’ option, it will wait indenitely for the user to enter something.

!source filename
You can use the ‘‘!source’’ command to execute the commands that are in a specied le in the same
manner as if these commands had been typed interactively at the command prompt. This is another
way of saving typing. For example, if you have some commands in the le ‘‘˜/MyStuff/do_some-
thing’’, you could run those commands via:
!source ˜/MyStuff/do_something

Note in particular that any subroutines dened in that le will persist and be available for use in inter-
active commands. (See: !help subroutines) If you are using the ‘‘!source’’ command to bring in a
whole script for executing, you probably want to go into ‘‘batch mode’’ rst. As an alternative to going
into batch mode, sourcing the script le, then exiting batch mode, you can supply the script lename
as an argument to the ‘‘!batch’’ command (e.g. ’!batch ˜/MyStuff/do_something’). This will go into
batch mode, source the specied le, then exit from batch mode automatically.

!batch [filename]
Starts ‘‘batch mode’’. If you supply a lename as an argument to the ‘‘!batch’’ command (e.g.
’!batch ˜/MyStuff/do_something’), ’ash’ will go into batch mode, source the specied le, then exit
from batch mode automatically.

!end
Ends ‘‘batch mode’’ and executes the pending AppleScript commands.

!show
Displays the text of the current AppleScript (i.e. the text of a partially completed multi-line command
or that of the most recently executed command, plus any previously dened subroutines or script
objects) This is useful when you want to copy & paste that AppleScript elsewhere, or just to review
the commands you have entered and the existing subroutines and script objects.

!editor
Activates Apple’s ‘‘Script Editor’’ and creates a new document with the text of the current script.

!rerun
Reruns the current AppleScript.

ash v0.60 2006-11-08 4

ASH(1) ASH(1)

!clear
Clears the current AppleScript.

!clearSub subName
Clears the specied AppleScript subroutine. For example, if you had previously dened a subroutine
named ‘‘foo’’, then ‘‘!clearSub foo’’ would remove it.

!clearScript scriptName
Clears the specied script object. For example, if you had previously dened a script object named
‘‘fred’’, then ‘‘!clearScript fred’’ would remove it.

!clearVar varName
Clears the specied variable or property. For example, if you had previously dened a variable or
property named ‘‘x’’, then ‘‘!clearVar x’’ would remove it.

!clearAll
Clears all previously dened subroutines, script objects, variables, and properties as well as clearing
the current AppleScript.

!cd [dirName]
Changes the current working directory to the directory specied. If no directory is specied, changes
to the user’s home directory. If the ‘‘!f ’’ option is used (‘‘!cd !f’’), it changes directory to the folder
of the frontmost Finder window.

!pwd
Displays the current working directory. (This command is actually just an abbreviation for ‘‘!!
pwd’’.)

!ls [options] [filenames]
Lists the les of the current directory. (This command is actually just an abbreviation for ‘‘!! ls’’ and
so it takes all the usual command-line options for ’ls’.)

!! command
Passes the specied command to a standard Unix shell for execution. For example, the command ’!!
ls’ does the same thing as the ‘‘!ls’’ command. (The ‘‘!ls’’ command is provided just as a con-
venience.)

!createMan
Creates a ’man’ page le named ‘‘ash.1’’ in the current directory. You will need to move this le to
one of the directories in your MANPATH (e.g. move it to /usr/share/man/man1/)

STAND-ALONE SCRIPT FILES
It is also possible to use ’ash’ in a non-interactive way, by specifying it as the ‘‘shebang’’ interpreter in a
script le. Using this mechanism, you can create stand-alone script les that can be run like usual Unix
scripts. To do this, you save your AppleScript commands (and special ’ash’ commands) in a le and make
the rst line of that le be the following:

#!/usr/bin/env ash

(This assumes that ’ash’ is in your shell execution PATH ! otherwise you should specify the full path to
’ash’ in that ‘‘shebang’’ line.) Then make the script le executable (using ’chmod +x’) and you will be able
to run that script like any other Unix command. Technical note: the reason why you need to use
’/usr/bin/env’ in the ‘‘shebang’’ line is that ’ash’ is itself a script.

When running non!interactively, ’ash’ is effectively in ‘‘batch mode’’. All of the AppleScript commands
are sent off for execution at one time.

Note that the ˜/.ashrc le is *not* read when running non-interactively (i.e. when running a stand-alone
script) and thus the ‘‘!norc’’ command-line option is redundant in this case. If you want to execute the
commands from your ˜/.ashrc le when running a stand-alone script, you can use the ‘‘!source’’ command
to do so.

An alternative way to run script les non-interactively is to specify the lenames on the ’ash’ com-
mand!line. For example: ’ash le1 le2’ would non-interactively execute the commands in the les ‘‘le1’’

ash v0.60 2006-11-08 5

ASH(1) ASH(1)

and ‘‘le2’’.

BUGS
* handling of top-level variables and properties is inadequate

AUTHOR
ash was written by Cameron Hayne (macdev@hayne.net). The initial version was in January 2002.

COPYRIGHT & LICENSE
Copyright 2006 by Cameron Hayne

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

VERSION
This man page was generated via the ‘‘!createMan’’ command using version 0.60 of ash. You can check
what version you are using by issuing the ‘‘!help version’’ command. You can get the latest version of ash
from the web site: http://hayne.net/MacDev/Ash/

ash v0.60 2006-11-08 6

